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Abstract

Occupation is a fundamental concept in social and policy research, but classifying job descrip-

tions into occupational categories can be challenging and susceptible to errors. Traditionally,

this involved expert manual coding, translating detailed, often ambiguous job descriptions to

standardized categories, a process both laborious and costly. However, recent advances in com-

putational techniques offer efficient automated coding alternatives. Existing autocoding tools,

including the O*NET-SOC AutoCoder, the NIOCCS AutoCoder, and the SOCcer AutoCoder,

rely on supervised machine learning methods and string-matching algorithms. Yet these au-

tocoders are not designed to understand semantic meanings in occupational write-in text. We

develop a new autocoder based on Google’s Text-to-Text Transfer Transformer (T5) model.

Like GPT and other large language models, T5 is pretrained on vast amounts of text data.

We develop a T5-based occupational classifier (T5-OCC) model with fine-tuned model param-

eters and training data from occupation write-ins from the 2019 American Community Survey.

By comparing our T5-OCC with existing methods, we show that the autocoding accuracy rate

increases from 61.8% to 71.1%. Considering the rapid change in neural language models, we con-

clude by offering suggestions on how to adapt our method for the development of occupational

autocoding models in future research.



1 Introduction

Coding job descriptions into occupational categories is a common but challenging task for re-

searchers, analysts, and organizations to classify job roles systematically (Cain and Treiman 1981;

Miller, Treiman, Cain, and Roos 1980; Treiman 1979). The process involves translating the detailed

content of a job description, sometimes abridged and ambiguous, into a standardized occupational

category. Traditionally, the gold standard for such occupational classification has been manual

coding by expert coders. This approach involves a meticulous process where the coder begins by

thoroughly reading the job description. Once familiarized with the content, the coder matches the

job titles and duties specified in the description against predefined criteria in a chosen classification

system. Based on this evaluation, the job description is matched with the most fitting category

or code. Although this traditional approach can adeptly categorize a vast number of job descrip-

tions into distinct occupations, spanning from a few to hundreds of categories, it is labor-intensive,

time-consuming, and often costly.

With the recent development of computational techniques for automated language understand-

ing and production, automated coding methods become a useful alternative to the manual coding

method (Census Bureau 2015). These techniques stem from the fields of machine learning and ar-

tificial intelligence, specifically designed to enable computers to understand, interpret, and produce

human language. These techniques present a suite of advantages that streamline and enhance the

coding process. First, these techniques can process large datasets in a fraction of the time a hu-

man would take, ensuring efficiency even as the data volume surges. Second, the method provides

more inter-coder reliability and coding consistency than human coding. Once a model is trained,

it can classify job descriptions uniformly, eliminating the chances of human error or biases that

might emerge from different coders. Third, while the initial investment for model development and

training might be substantial, the long-term value for cost-saving is very promising. Employing

computer-assisted models can be more economical than consistently hiring human coders, partic-

ularly for large datasets. Fourth, the dynamic nature of these techniques means that the model

is always learning and refining its performance. For example, models built on active and rein-

forcement learning algorithms enhance their classification precision as they encounter more data.

1



Finally, these methods are well known for their adaptability. As the landscape of occupational

classifications shifts or expands, these models can be easily recalibrated or retrained, making them

indispensable tools that cater to a wide range of research demands.

In this paper, we first describe how occupations are collected, coded, and classified from occupa-

tion write-ins in U.S. administrative data and social surveys. We then provide a review of existing

autocoding methods that have been used to reduce the workload of clerical coders and implemented

by the Census Bureau, Occupational Information Network (O*NET), Centers for Disease Control

and Prevention (CDC), and the National Cancer Institute (NCI) (Gweon et al. 2017; Savic et al.

2022; Schierholz et al. 2018; Schierholz and Schonlau 2021; Wan et al. 2023). Yet one limitation

of these existing autocoders is that they primarily focus on exact text matches and do not un-

derstand semantic meanings. We review several natural language processing models that can be

used to improve the accuracy and consistency of current occupational autocoders. The models

are developed from Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN),

and Transformer-Based models, such as the Bidirectional Encoder Representations from Trans-

formers (BERT), the Generative Pre-trained Transformer (GPT), and the Text-To-Text Transfer

Transformer (T5). These methods can handle variations in language, including synonyms, para-

phrases, and contextual differences, which string-matching algorithms cannot easily accommodate.

We further fine-tune these models using manually coded occupations from public use industry and

occupation write-in files1 in the American Community Survey so that the models are not only

adept at tasks like text data extraction and production but can discern nuanced, socially formed,

and constantly evolving conceptions of occupations. We show that the fine-tuned FLAN-T5-based

occupational classifier, referred to as T5-OCC, outperforms existing autocoders and achieves the

highest accuracy for coding occupations collected in the 2019 American Community Survey. We

conclude with a discussion about how to use T5-OCC and how it can help future sociological

research on jobs and occupations.

1The U.S. Census Bureau’s Disclosure Review Board and Disclosure Avoidance officers reviewed the data product
for unauthorized disclosure of confidential information and approved the disclosure avoidance practices applied to
this release (CBDRB-FY22-290).
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2 Defining Job Titles and Occupations

Occupations are a fundamental component of social stratification. Compared with jobs, occupations

carry more social significance and convey information about an individual’s social status, identity,

and role within society. They are often linked to levels of education, income, and prestige. Beyond

academic research, standardized descriptions of occupational titles can also help match job seekers

with the right job opportunities. These titles serve as an initial touchpoint for both employers and

potential employees, providing a snapshot of the nature and scope of the job.

The development of standardized occupational titles, however, poses a significant challenge.

Without a uniform framework for these descriptions, there can be ambiguity and potential mis-

interpretation. This lack of occupational classifications can lead to job seekers applying for po-

sitions that might not align with their skills or expectations, and employers may find themselves

sifting through applications that do not match their criteria. Overall, the mismatch caused by

non-standardized descriptions can result in longer hiring processes, increased costs, and missed

opportunities for both job seekers and employers.

Since 1820, the U.S. Bureau of the Census began to develop a standard index of occupational

classifications. Before 2005, occupations of U.S. workers were collected in the federal decennial

Census’s long-form questionnaire, but this practice changed with the debut of the annual American

Community Survey (ACS). The ACS is currently the primary source of occupation data. The ACS

questionnaire asks respondents to write descriptions of the type of activities or duties they do on

the job (see Figure 1). The data also collect information on a respondent’s industry. Industry data

describe the kind of business conducted by a person’s employing organization. These questions

ask: “What was the name of this person’s employer, business, agency, or branch of the Armed

Forces?,” “What kind of business or industry was this?,” and an item with four check boxes from

which respondents are to select one to indicate whether the business was primarily manufacturing,

wholesale trade, retail trade, or other (agriculture, construction, service, government, etc.). The

occupation and industry questions are asked of all people 15 years old and over who had worked in

the past 5 years. For employed people, the data refer to the person’s job during the previous week.

Both questions about jobs and industry are used in the coding of occupations.
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*** FIGURE 1 ABOUT HERE ***

To convert written questionnaire responses into specific Census Occupation Codes, the Census

Bureau has developed a complex coding process. The main components of this process are the

Alphabetical Indexes of Industry and Occupation, the Census Bureau Military Occupation Index,

the Employer Name List (ENL), a staff of clerical coders, and more recently, the ACS Industry

and Occupation (I & O) AutoCoder.2 The Alphabetical Indexes of Industry and Occupation have

been developed over time and are continuously updated through the review of survey responses and

SOC updates. To classify a respondent’s industry and occupation, the Alphabetical Indexes contain

over 22,000 industry descriptions and 32,000 job titles in alphabetical order.3 Each combination of

industry description, job title, and job description is assigned a four-digit numeric code by trained

clerical Industry and Occupation (I & O) coding staff at the National Processing Center (NPC) in

Jeffersonville, Indiana.4 I & O coding experts convert the written questionnaire responses to codes

by comparing these descriptions to entries in the indexes (Census Bureau 2019). We describe the

steps in collecting and coding occupation data in ACS in Figure 2.

*** FIGURE 2 ABOUT HERE ***

The Census Occupation Code List is based on the Standard Occupational Classification (SOC)

system. The Federal government reclassifies occupations around every 10 years through updates to

the SOC system.5 The Census Bureau code lists are based on even more comprehensive lists issued

by the Office of Management and Budget (OMB). The Census occupation classification systems

are aggregate versions of the SOC and each Census occupation code can be crosswalked to a SOC

code.

As occupations grow or decline over time, new occupations may be broken out and declining

occupations may be merged with other occupations to maintain a sufficient sample to be able to

2The Census Bureau implemented the ACS Industry and Occupation autocoder in 2012 to supplement clerical
coding of industry and occupations in the ACS.

3A general overview of the Alphabetical Indexes of Industries and Occupations can be found at <https://www.

census.gov/topics/employment/industry-occupation/guidance/indexes.html>.
4Similar to occupation, the Census Bureau maintains the Census Industry Code List, an aggregated version of the

North American Industry Classification System (NAICS) that is updated every 5 years.
5The SOC revision process is overseen by the Standard Occupational Classification Policy Committee (SOCPC),

which includes representatives of 11 federal agencies, including the Census Bureau.

4

https://www.census.gov/topics/employment/industry-occupation/guidance/indexes.html
https://www.census.gov/topics/employment/industry-occupation/guidance/indexes.html


publish data on them. As occupations are merged, more differentiated job titles will be present

within the merged occupations. In the case of residual occupations (e.g., “all other,” “not elsewhere

classified”), a large assortment of job titles may be present. Occupations vary in the number of

job titles they contain, as well as the number of incumbents. Updating the SOC involves using a

variety of methods guided by social and economic theories of work and the economy, with the goal

of producing a classification system that is both descriptive and enumerative. The SOC organizes

all work performed for pay or profit into detailed occupations by the work performed or usual

activities at the job. Education and training are only considered in certain cases.

In addition to ACS, other surveys implemented by the U.S. Census Bureau, such as the Current

Population Survey, have adopted similar questions about jobs and industries for the collection

of occupational information. Other non-federal government surveys, such as the General Social

Survey, also followed a comparable methodology. By employing consistent questions about jobs

and industries, these surveys ensure a standardized approach, making it easier to compare and

analyze occupation data across different sources and over time. The autocoding methods that

we discuss below can be applied to a wide range of surveys that include free-text or open-ended

questions about occupations.

3 A Review of Existing Automated Coding Methods

Automated coding methods are widely adopted within federal agencies working with occupation

data to increase the standardization of coding and mitigate costs. The autocoders currently used

by the U.S. Census Bureau, Occupational Information Network (O*NET), the National Institute

for Occupational Safety & Health (NIOSH), and the National Cancer Institute (NCI) share sim-

ilar methodologies, relying heavily on supervised machine learning techniques, regression models,

and string matching applications. We seek to build upon the current autocoder methodology by

accounting for semantic similarity using neural network language models. Below we provide an

overview of existing autocoding methods developed for U.S. occupational classifications. We com-

pare the performance of these autocoders with our T5-OCC model and several other language

models in the Results Section. A few recent papers have also compared existing autocoders for
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coding European and Canadian occupation data into the International Standard Classification of

Occupations (ISCO) (De Matteis et al. 2017; Gweon et al. 2017; Rémen et al. 2018; Savic et al.

2022; Wan et al. 2023). For the purpose of our analysis, we focus on U.S. occupation data and

codes.

3.1 Current U.S. Census Bureau AutoCoder

The American Community Survey (ACS) is a nationally representative survey administered to over

3.5 million addresses across the United States annually. To determine a person’s occupation, the

ACS asks about a person’s job title and main job duties or activities. These open-ended text

responses are then recorded in the industry and occupation write-in file. Traditionally, these write-

in files would be coded into standard occupational codes by clerical coders. Yet, since 2012, an

autocoder was introduced to assign industry and occupation codes using the data found in the

industry and occupation write-in file (Thompson, Kornbau, and Vesely 2012).

Data dictionaries are the foundation of the industry and occupation autocoder. Data dictio-

naries contain common words or phrases found in the industry and occupation write-in file and

their corresponding industry and occupation codes. The data dictionaries are divided into three

segments: a one-word dictionary, a two-word dictionary, and a dictionary containing complete

write-in entries. ACS industry and occupation responses are then matched to these data dictionar-

ies. The matching process returns the industry and/or occupation code(s) most associated with the

inputted text response. A logistic regression model is then used to determine which of the codes

generated is the most likely to match the industry and occupation code assigned clerically. The

accuracy rate of the Census autocoder varies between 20% and 40% (Thompson, Kornbau, and

Vesely 2012).6 However, the Census autocoder is not currently accessible to the public, prevent-

ing us from comparing its accuracy with other autocoders when applied to the ACS data in our

analysis.

6These accuracy rates are estimated based on our communication with Census Bureau researchers.

6



3.2 O*NET-SOC AutoCoder

The Occupational Information Network (O*NET) is a comprehensive database of job titles and

descriptions, as well as skills, knowledge, tasks, and other attributes, for approximately 1,000 oc-

cupations in the United States. The database is developed under the sponsorship of the U.S.

Department of Labor/Employment and Training Administration. O*NET-SOC refers to the inte-

gration of the O*NET database with the SOC system. This modification provides a more detailed

and nuanced classification of SOC occupations based on both the nature of the work and the skills

and knowledge required. For example, O*NET-SOC breaks the 11-1011 (Chief Executives) code

in SOC into two categories: 11-1011.00 (Chief Executives) and 11-1011.03 (Chief Sustainability

Officers).

The O*NET-SOC AutoCoder (version 14.1)7, developed by R.M. Wilson Consulting, Inc. for

the U.S. Department of Labor, is an automated coding system designed to assign SOC 2018,

O*NET 2019, and Occupational Employment Statistics (OES) 2020 codes to unstructured text

data detailing job title and/or job descriptions. Unlike traditional keyword searches, it uses a

proprietary parsing and coding algorithm that assigns occupational codes and fit scores to job

content. Specifically, the autocoder functions by tokenizing job data into individual words and

phrases, which are then matched with words and phrases that are associated with O*NET-SOC

codes in the O*NET database. The autocoder developer has assigned different weights to words

and phrases in the O*NET database, ensuring that important words for a specific O*NET-SOC

occupation carry more weight in the final match evaluation.

The autocoder’s user interface allows for input of a job title and job description, and supple-

mental details like firm name, job category, education level, and industry code, to enhance the

accuracy of the code assignment. The generated match score reflects the weighted average from

various match methods, with higher scores indicating higher accuracy. A score above 70, for ex-

ample, indicates at least a 70% accuracy rate in predicting the correct occupational code (O*NET

2023). Note that the accuracy rate reported by O*NET-SOC is not directly comparable to that of

the Census autocoder. The O*NET-SOC AutoCoder generates multiple possible matches, each of

7We accessed the autocoder in December 2023.
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which is associated with a score, whereas the Census autocoder reports a single occupation code

with the highest likelihood of matching. The O*NET-SOC AutoCoder can be accessed on the

O*NET website.8

3.3 NIOCCS AutoCoder

The National Institute for Occupational Safety and Health (NIOSH) within the Centers for Dis-

ease Control and Prevention (CDC) developed the NIOSH Industry and Occupation Computerized

Coding System (NIOCCS) V4.0.9 NIOCCS assigns NAICS 2017 and SOC 2018 codes to un-

structured text describing industry and occupation. Similar to the Census Bureau autocoder and

the O*NET-SOC AutoCoder, the NIOCCS uses supervised machine learning techniques, such as

weighted matching, exact matching, and n-grams to assign industry and occupation codes. NIOCCS

conducts these matches based on the NIOCCS Knowledgebase, a repository that contains detailed

information about industry and occupation titles. Additionally, the NIOCCS Knowledgebase in-

cludes entries for prevalent misspellings, enhancing the precision of the matching process (NIOSH

2023).

The NIOCCS AutoCoder proceeds in several steps. First, similar to the O*NET AutoCoder, the

NIOCCS first tokenizes input data into words and phrases. It uses both word swapper and synonym

finder to replace unrecognized words with words in their database using a substitute word table

(“Knowledgebase”). Then the autocoder tries to find the best occupation code for a given phrase

using different techniques, including phrase exact match, word proximity match, weighted word

match, n-gram match, rule match, SQL full-text search, company match, and phonetics match.

Along with the best occupation code, the algorithm also generates an associated confidence level.

If the confidence level is above the minimum level required for the autocoding method, then the

occupation code selected by the coding engine will be reported. Otherwise, the input data require

human intervention for generating an occupation code (NIOSH 2010, 2018; Roberts et al. 2022).

The NIOCCS AutoCoder can be accessed either via its website or its application programming

8The O*NET-SOC AutoCoder can be accessed on its website: https://www.onetsocautocoder.com/plus/

onetmatch.
9We accessed the autocoder in December 2023.
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interface (API).10

3.4 SOCcer AutoCoder

Standardized Occupation Coding for Computer-assisted Epidemiologic Research (SOCcer) is an

automated algorithm designed to compare job descriptions to the U.S. SOC 2010 6-digit codes

(Russ et al. 2016, 2023). Similar to the NIOCCS AutoCoder, SOCcer (v2) relies on a knowledge-

base, which builds on publicly available occupational information from sources like the O*NET,

the Bureau of Labor Statistics Direct Match Title File, and the U.S. Census Occupational Code

Index. The algorithm first uses job descriptions obtained from a study called the New England

Bladder Cancer Study (NEBCS), which consists of 2,631 participants and 14,893 jobs as train-

ing data. The SOCcer then estimates the similarity between the job title in the description and

those in the knowledge base using three classifiers (J classifier, Jmax classifier, and Pmaxent clas-

sifier).11 The algorithm then incorporates industry information because SOC-2010 codes are often

industry-specific. The S>0.01 classifier identifies SOC codes frequently observed within an indus-

try. That is, only SOC codes that are observed with a frequency of 1% or more within an industry

are considered significant for classification.12 To evaluate job tasks, SOCcer employs the fuzzy

fingerprint approach (FPP) classifier, which compares task descriptions in the job description to

task information associated with SOC-2010 codes from the O*NET database. Specifically, the task

information from job descriptions was compared to both the noun and verb fingerprints for each

SOC. This comparison yielded a fingerprint similarity measure on a continuous scale between 0 and

1 for each job description and SOC code. The calculation of FPP involved assessing the sum of

10More information about NIOCCS can be found on the website (https://csams.cdc.gov/nioccs/SingleCoding.
aspx) and its free API (https://wwwn.cdc.gov/nioccs/IOCode). A batch job can be submitted to autocode multiple
entries at a time.

11The J classifier uses a soft Jaccard index to compare job titles, considering factors like word variants, misspellings,
and abbreviations. The Jmax classifier identifies the SOC code(s) with the highest Jaccard index for a given job title.
The Pmaxent classifier uses maximum entropy modeling to estimate the probability of a job title-SOC code match
based on the training data.

12This classifier assigns equal weight to a group of SOC codes that were observed with a frequency of 1% or
more within a given industry. The prevalence of a SOC code within each Standard Industry Classification (SIC)
was estimated from the National Industry-Occupation Employment Matrix reported by the U.S. Bureau of Labor
Statistics. The classifier then dichotomizes the prevalence data, categorizing SOC codes based on a specified threshold
(i.e., 0.01). All SOC codes surpassing this threshold were considered equally valid assignments for that particular
industry. SOC codes below this threshold are excluded from the autocoded output.
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weights for words in the job description that matched those in the SOC fingerprints for both nouns

and verbs, relative to the total sum of weights for all words in the noun and verb SOC fingerprints

(see Appendix A in Russ et al. 2023).

SOCcer combines the results from all five classifiers (J, Jmax, Pmaxent, S>0.01, and FPP)

using logistic regression. This step determines the relative importance of each classifier and scales

their results to provide a single score for each job-SOC comparison. The resulting score represents

the estimated probability that an expert coder would assign a particular SOC-2010 code to the job

description. The SOCcer algorithm provides the top 10 highest-scoring SOC codes for each job

description. For each job in the evaluation data, SOCcer selects the SOC code with the highest

score as its prediction. This predicted SOC code is then compared to the SOC code assigned

by expert coders. The SOCcer AutoCoder can be accessed via the National Cancer Institute’s

website.13

4 Natural Language Processing Models for Automated Coding

The aforementioned autocoders can be considered fine-tuned language models, which are subsets

of machine learning models trained to handle unstructured text data and to analyze a sequence of

words in a given language. A language model can be used for many different natural language pro-

cessing (NLP) tasks, such as text summarization, classification, named entity recognition, content

generation, and translation. For the purpose of our analysis, we divide language models into three

broad categories: heuristic models, probabilistic language models, and neural network language

models. We then adapt these models to code occupational write-in raw data in ACS into Census

occupational codes and SOC codes. This analysis can be considered a text classification task in

NLP.

4.1 Heuristic Language Models

Heuristic language models rely on rules, guidelines, and heuristics, such as common-sense principles

or strategies, to analyze language patterns and make predictions. Fuzzy matching methods are

13Users can upload datasets with job titles to SOCcer’s website (http://soccer.nci.nih.gov) and receive output
datasets containing the 10 highest-scoring SOC codes and their corresponding scores for each job. The results can
be reviewed using the companion software, SOCAssign.
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commonly considered a heuristic approach, which uses heuristics, rules, and similarity metrics to

compare and match strings or data elements that may be similar but not identical. The goal is to

find approximate matches or similarities between strings, often in scenarios where exact matches

are not expected or required. Heuristic models may not rely heavily on large training datasets or

expert knowledge. They do not typically use statistical probabilities to inform their predictions.

The aforementioned O*NET-SOC, NIOCCS, and SOCcer AutoCoders all fall into this category.

4.1.1 Fuzzy Matching Methods

Fuzzy matching is a method used to identify the approximate equivalence of two or more free-

text entries. In fuzzy matching, researchers define rules or similarity thresholds to determine

what constitutes a match or a similarity. The similarity distance is mostly calculated by counting

character operations like insertion, deletion, substitution, and swapping. The method is particularly

useful when dealing with data that may contain spelling errors, abbreviations, or variations of a term

(Apostolico and Galil 1997; Gusfield 1997; Sankoff and Kruskal 1983; Wagner and Fischer 1974).

Fuzzy matching can be useful in various applications, such as spelling check, record deduplication,

approximate string matching, and text similarity analysis. It allows researchers to find relevant

results even when the input data contains typos, misspellings, or variations. This method has a

long tradition in studies on sequence analysis in linguistics, biology, and sociology (reviewed in

Abbott 1995).

Two commonly used algorithms for measuring the difference between two sequences in the fuzzy
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matching method are the Levenshtein distance14 and the Jaro-Winkler distance.15 The output of

fuzzy matching for text classification is a list of labels sorted by their similarity distance with the text

entry from low to high. This method has been increasingly used in sociological studies that analyze

name or string data (de Leeuw and Keijl 2023; Heiberger, Munoz-Najar Galvez, and McFarland

2021). A potential limitation of the fuzzy matching method is that it does not understand the

semantic meaning of a text entry. It only focuses on the structural and character-level similarities

between two strings. It determines how closely two pieces of text resemble each other based on

their characters, sequence of characters, or structure. For example, “overseeing all business” and

“management” may refer to the same occupation but the Jaro-Winkler similarity is 0 and the

14The Levenshtein distance measures the minimum number of single-character edits (i.e., insertions, deletions, or
substitutions) required to change one word into the other (Levenshtein 1966). When two string texts are identical,
their distance is 0. As the distance increases, the strings become more dissimilar (Lesnard 2010). Formally, the
Levenshtein distance between two strings, s1 and s2, is defined as

levs1,s2 =


max(i, j), if min(i, j) = 0,

min


levs1,s2(i− 1, j) + 1

levs1,s2(i, j − 1) + 1 otherwise

levs1,s2(i− 1, j − 1) + 1s1i ̸=s2j

(1)

where i and j are indexes of characters in strings s1 and s2. For example, s1i refers to the character in the s1 string
at the i-th position. The Levenshtein distance can be converted to a similarity score, simlev(s1, s2), via normalization
as follows

simlev(s1, s2) = 1− levs1,s2

max(|s1|, |s2|)
(2)

where max(|s1|, |s2|) refers to the maximum Levenshtein distance (all characters are different) between the two strings.
15The Jaro-Winkler distance measures the difference between two strings using 0 for exact match and 1 for no

similarity (Cohen et al. 2003; Winkler 1990, 2006). The distance score is expressed as 1−similarity. The Jaro-
Winkler similarity between two strings s1 and s2, simjw, is a modification of the original Jaro similarity, simj, and is
defined as

simjw(s1, s2) = simj(s1, s2) + l · p ·
(
1− simj(s1, s2)

)
, where (3)

simj(s1, s2) =

{
0, if m = 0
1
3

(
m
|s1|

+ m
|s2|

+ m−t
m

)
, otherwise

(4)

|s1| and |s2| refer to the length of the two strings, m refers to the number of matching characters, and t is half the
number of matching (but different sequence order) characters (i.e., the number of transpositions). When estimatingm,

two characters from strings 1 and 2 are considered matching if they are the same and not farther than
⌊

max(|s1|,|s2|)
2

⌋
−1

characters apart. If none of the characters contained in one string can be found in another string, then the strings are
not similar and the resulting Jaro similarity score is 0. In addition, to convert the Jaro similarity to the Jaro-Winkler
similarity in equation (4), l refers to the length of common prefixes at the start of the string up to a maximum of 4
characters, and p is a constant scaling factor for how much the score is adjusted upward for having common prefixes.
Additional human intervention and adjustment through p can often improve the performance of the fuzzy matching
method for a specific text classification task.
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Levenshtein similarity is 0.167.16

4.1.2 Cosine Similarity

To address the limitation of fuzzy matching based on distance measures, some recent research

suggests measuring similarity between vectors rather than between sequences of characters (Martin-

Caughey 2021). This requires converting the occupational strings into vectors using techniques such

as Term Frequency-Inverse Document Frequency (TF-IDF) or word embeddings. In these numerical

vectors, each dimension represents a term (word) and its associated weight or frequency. Compared

with the distance measures that consider the order of characters within the sequences, the cosine

measure represents strings using “bag-of-words” vectors, which means it compares unordered sets.

The cosine measure quantifies similarity by evaluating the cosine of the angle formed between

these two vectors. In other words, it computes the dot product of the vectors and divides it by the

product of their lengths. This measure is independent of the magnitudes of the vectors and relies

solely on the relative angle between them. Formally, the cosine similarity between two vectors X1

and X2, which are converted from strings s1 and s2 respectively, is defined as

similaritycos(X1, X2) = cos(θ) =
X1 ·X2

||X1||||X2||
=

∑n
i=1X1iX2i√∑n

i=1X
2
1i ·

√∑n
i=1X

2
2i

(5)

where X1i and X2i are the ith components of vectors X1 and X2.

In the context of occupational write-in data, where each word is assigned a distinct coordinate

and a write-in string is represented as a vector detailing the frequency of each word’s occurrence

within the write-ins, the component values of the vectors cannot be negative and thus the cosine

similarity is bounded in [0, 1]. In the next section 4.2, we also apply cosine similarity in neural

network language models to fine-tune some of the pretrained transformer-based models.

4.2 Probabilistic (Statistical) Language Models

Probabilistic language models, also known as statistical language models, learn patterns of text

data with clear model assumptions and likelihood functions. They need more human intervention

16The Levenshtein distance between the two strings is 20 and the maximum distance is the length of the first string,
i.e., 24. Thus the Levenshtein similarity is 0.167 (= 1− 20/24).
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to correct and learn in the training process than heuristic or neural network models. By con-

trast, neural network language models learn the underlying text patterns with their own layers of

connected and weighted data nodes, which need limited human intervention during pre-training,

training, and modeling processes.

Probabilistic language models learn text patterns by modeling the likelihood of specific word

sequences. They typically start with the Markov assumption that the probability of the next

word in a sequence is determined by the previous n-1 words, i.e., n-grams, and not by any earlier

words. In order to assign a given text to one or multiple occupational codes, the models often

proceed in two steps. First, the model transforms raw text into a feature vector. For example, the

probabilities assigned to specific n-grams in the text can be considered as features. Next, based

on the feature vector for a piece of text, the model relies on different machine learning classifiers

(e.g., logistic regression and support vector machines) to determine the occupational category of

the text. Below, we illustrate two different types of probabilistic language models for the task of

autocoding occupational write-in data: conditional random fields model and topic modeling.

4.2.1 Conditional Random Fields Model

A limitation of the fuzzy matching method is that it treats each string independently and does

not consider sequential context. The method does not allow researchers to consider the context

and dependencies between neighboring words when making predictions. For example, there is

a higher probability of encountering the word “president” in an occupational write-in when the

preceding word is “vice” compared to when no contextual information is known. The conditional

random fields (CRF) model is a type of probabilistic model often used in pattern recognition and

classification tasks, and especially for sequence labeling tasks. The model identifies and learns text

patterns using in-context word sequences (Lafferty et al. 2001). For text classification, it models

the conditional probability of a word with the previous word combination and maps it to a class

(e.g., a specific occupation code). Mathematically, the model is expressed as

p(y | x) =
1

Z(x)

T∏
t=1

exp

{
K∑
k=1

θkfk (yt, yt−1,xt)

}
(6)
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where x is a sequence of input data (e.g., the occupational write-in text for one person); y is a

sequence of labels corresponding to the input data (e.g., Census occupation codes); θkfk(·) is a

nonlinear model mapping extracted text features to a score; and Z(x) is a normalization function

converting the scores from word combinations to a probability.

Compared to fuzzy matching methods that generate similarity scores, a CRF model estimates

probabilities for different label sequences (i.e., standard occupational classification codes) and uses

statistical inference techniques to find the most likely label for the input data. Fuzzy matching,

on the other hand, relies on heuristics and similarity metrics without probabilistic modeling. Also,

CRFs excel at handling text data with linguistic complexities, whereas fuzzy matching lacks lin-

guistic awareness.

CRFs require supervised learning with annotated training data before making inferences on a

new dataset. In the training dataset, each text is assigned to an occupational class label. The goal

of this step is to adjust parameters in the CRF model to maximize the likelihood of the observed

labels. Then for a new dataset with unlabeled text, the trained CRF will predict the most probable

occupational label for each text. In other words, the researcher finds the occupational label that

maximizes the conditional probability defined in equation (6).

One notable limitation of CRFs lies in the computational demands associated with training

them, particularly when dealing with extensive datasets. In comparison to neural networks, which

can leverage pretraining to expedite the learning process, CRFs rely on the availability of high-

quality human-coded input. This reliance on human annotators for creating labeled training data

can introduce an additional cost factor into the modeling process. Therefore, CRFs may necessitate

more resources and effort in terms of data preparation and labeling, making them potentially less

cost-effective, especially in scenarios where large-scale, high-quality annotations are required. In

the application of occupational autocoding, this model may require more human clerical coding

data as training data than other methods to achieve the same accuracy rates.

4.2.2 Topic Modeling

Topic modeling is widely used to identify clusters or groups of common themes within given un-

structured textual data. Topic modeling belongs to unsupervised machine learning and there are
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two conventional and widely used statistical methods: latent semantic analysis (LSA) and latent

Dirichlet analysis (LDA). The newly developed neural network language models advance topic mod-

eling and we will cover those approaches in the next subsection. Given that LDA tends to have

better performance than LSA, we use LDA as an illustration of the topic modeling method.17

The LDA model assumes that documents (i.e., each occupational write-in entry) on similar

topics build on a similar group of words, and thus it relies on word co-occurrences to discover

topics within documents. Specifically, each document is modeled as a mixture of various topics,

and each topic is a mixture of various terms. Both the topics and words per topic have a sparse

Dirichlet prior (Blei 2012; Blei et al. 2003). The total probability of the observed data is specified

as

P(φ1:K ,θ1:D,Z1:D,W 1:D)

=

K∏
k=1

P(φk)︸ ︷︷ ︸
distribution of
words in topic k

D∏
d=1

P(θd)︸ ︷︷ ︸
distribution of topics

in document d

N∏
n=1

P(Zd,n | θd)︸ ︷︷ ︸
topic assignment of

word n in document d

P(wd,n | φ1:K ,Zd,n
)︸ ︷︷ ︸

observed word n
in document d

(7)

where φ1:K are the topics where each φk ∼ Dirichlet(β) is a distribution over the vocabulary;

θd ∼ Dirichlet(α) are the topic proportions for document d; θd,k is the topic proportion for topic k

in document d; zd are the topic assignments for document d; zd,n is the topic assignment for word n

in document d; wd are the observed words for document d; wd,n is the observed word n in document

d; K refers to the number of topics; D refers to the number of documents; N refers to the number

of words in document d. For each document, the LDA model first allocates the observed words to

K topics, where K is predetermined by the researcher; then for each topic, a document receives a

probability that it belongs to this topic based on the frequency of terms appearing in the document

and the frequency of terms appearing in each topic. In our analysis, each document refers to an

occupational write-in. We choose the number of standard Census occupational categories in 2018

as the predetermined number of latent topics, namely, K = 568.

17LSA extracts the abstract topics and assigns labels for each cluster based on the intuition that words with similar
meanings tend to be used together more frequently. For text classification, LSA groups textual entries semantically
by the surrounding context and word (and word combination) frequencies.
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4.3 Neural Network Language Models

Neural network language models are gaining popularity in the analysis of text data in social sci-

ence research applications (Grimmer, Roberts, and Stewart 2022; Gentzkow, Kelly, and Taddy

2019). These models mimic the human brain in learning unstructured and highly dimensional

texts with its network of neurons consisting of layers of connected and weighted data nodes. Differ-

ent from probabilistic language models, many neural network language models were developed to

understand the semantic meaning of words and can perform multiple complex NLP tasks, such as

question-answering. Moreover, they require less human interventions in the training process and in

conducting new tasks. When a neural network language model is pre-trained on massive amounts

of text data, we refer to this model as a large language model. Large language models contain

a huge number of parameters (often billions) that are used to store a vast amount of language

information and linguistic patterns.18

There are three general architectures for neural network language models: convolutional neural

networks (CNN), recurrent neural networks (RNN), and the transformer (Kim 2014; Medsker and

Jain 2001; Vaswani et al. 2017). These three architectures differ in the direction of passing inputs

through network layers, text encoding method, and how data nodes are connected. Below we adapt

language methods based on the three architectures separately for our specific text classification task

in converting ACS occupational write-in data to 2018 Census occupation codes and SOC codes.

4.3.1 Convolutional Neural Network Models

Convolutional neural networks (CNNs) are a type of artificial neural network commonly used in

deep learning. CNNs are composed of one or more convolutional layers. In each layer of the

network, CNNs apply a set of learnable filters (also known as kernels) to the input data to extract

features and learn patterns of the data. CNNs, which are widely used for image analysis and image

classification, have also been adapted for text data analysis (Kim 2014). The model typically

starts with converting text to numerical vectors, such as word embeddings, which capture semantic

relationships between words. Then convolutional layers are applied over the word embeddings to

18In most cases, neural network language models after the Generative Pre-trained Transformer 2 (GPT-2) released
in 2019 are considered large language models.
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extract local features or patterns from the text. These convolutional filters are small windows

that move across the input text, like CT scans, capturing patterns at different scales (e.g., word

combinations or n-grams of varying lengths). Each filter focuses on a specific section of the text

and detects patterns within that region.

After the convolutional layers, pooling layers are often used to reduce the dimensionality of

the extracted features while preserving the most salient information. Following the convolutional

step, the collected features are forwarded through a classifier for the subsequent text classification

process. This step is also known as fully connected layers, namely by converting the representation

of text in word embeddings back to a text format. In essence, CNNs extract textual characteristics

from various lengths of word sequence within the input text, which are then employed in the

classification task. CNNs are effective at capturing local patterns and features within the text.

Compared to transformer-based models that require a large number of parameters, CNNs can

be computationally efficient with fewer parameters. If computational resources are constrained,

smaller CNNs may be preferred to large transformer models due to their lower model complexity.

CNNs work well when the focus is on local patterns and the order of words is less important. Yet,

it is unknown whether the temporal or sequential aspect of the occupational write-in text data is

important for occupational classification.

4.3.2 Recurrent Neural Network Models

Recurrent neural networks (RNNs) are a class of artificial neural networks designed for processing

sequential data, where the order of words or word combinations in the text input matters. RNNs

introduce a form of memory into the network. At each time step, the RNN model processes the

current input and maintains an internal hidden state that depends on the previous state and input.

This hidden state effectively captures information about the context or history of the sequence up

to that point.19 RNNs incorporate loops within their networks to integrate new words with the

information previously encountered and processed in earlier steps. This integration allows RNNs

19In a standard feed-forward neural network, each neuron in one layer is connected to every neuron in the adjacent
layer, and each connection has its own weight. However, in RNNs, the same set of weights and biases is used for
each time step in the sequence. This weight sharing is applied to all the neurons in the RNN layer. This means that
the network parameters (weights and biases) are not specific to a particular time step but are shared across all time
steps in the sequence.
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to learn from the sequential data by updating their internal state with each new input, facilitating

the identification of relationships and patterns within the sequence.

For example, when processing a job description such as “direct the overall business activities

for a credit card company,” the RNN model takes in each word individually and sequentially. As

the model processes a word like “business,” it has already factored in the context provided by

preceding words, such as “direct,” “the,” and “overall.” The RNN model then passes the features

learned from this contextual sequential information through a text classification classifier.

RNNs, with their sequential processing capability, typically outperform CNNs in text classifi-

cation tasks. Our analyses compare these two algorithms to better understand whether the order

of words in occupational write-in data matters for occupational classification. However, RNNs

are also computationally expensive, as they process one data element at a time, which limits the

potential for parallel computation. Moreover, as the input text length increases, RNNs encounter

a vanishing gradient problem, making it difficult to retain information from distant parts of the

sequence. Recently, transformer-based models, such as BERT, have gained prominence in text

analysis due to their ability to capture global context and long-range dependencies more effectively.

4.3.3 Transformer-Based Models

The Transformer is a deep learning architecture introduced in 2017 that has become the foundation

for recently developed large language models (Vaswani et al. 2017). Unlike traditional sequential

models, the Transformer utilizes a non-sequential feed-forward neural network that processes in-

put sequences in parallel. This approach offers several advantages over recurrent neural networks

(RNNs). In contrast to RNNs, transformer-based models require less time for training the same

dataset and do not rely on recurrence. Instead, they leverage a self-attention mechanism that

enables the language model to assign varying degrees of importance to input text tokens during

analysis and prediction. This self-attention mechanism effectively addresses the vanishing gradient

problem often encountered in RNNs, allowing transformer models to capture long-range dependen-

cies without the constraints of sequential processing.

Transformer-based language models typically proceed in three steps. First, an input text is

tokenized and positional encoding is used to encode the relative order of each word as a sequence.
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Second, the encoder applies a set of hidden states representing the input text at different levels of

abstraction. Third, the decoder learns from the hidden layers to guess the next word in a local

context and generates an output sequence based on the encoded text sequence.

The original transformer is a full encoder-decoder architecture. Different transformer-based

language models adapt the full encoder-decoder architecture to be encoder-only, decoder-only, and

encoder-decoder models. Generally, encoder-only models (e.g., BERT and its variants) only mask

tokens in the input and are suitable for NLP tasks such as text classification and named entity

recognition. Decoder-only models (e.g., GPT and its variants) randomly mask tokens on the output

side in the pre-training process and are suitable for text generation. The encoder-decoder models

(e.g., T5 and its variants) require both the input and output text in the pre-training process and

randomly mask tokens on both sides. The full encoder-decoder models are suitable for text-infilling

tasks, such as text translation and text summarization.

BERT Models Bidirectional Encoder Representations from Transformers (BERT) is an encoder-

only transformer-based language model introduced in 2018 (Devlin et al. 2018). The model was

pre-trained on a large volume of English corpus from various sources on the internet. This corpus

consists of books, articles, websites, and other text sources. BERT processes this massive collection

of sentences and paragraphs in English using a self-supervised learning approach. Self-supervised

learning involves understanding and representing the underlying English language without any

specific guidance or labeled data. Specifically, BERT aims to learn meaningful representations of

language by trying to predict missing words in sentences. It takes a sentence, randomly masks out

15% of the words, and then tries to predict what those missing words are. This task forces BERT to

understand the context and relationships between words in a sentence. Different from RNNs, which

process the words one after the other sequentially, BERT can learn a bidirectional representation

of the sentence. It can also learn the semantic order of two sentences and their relationships by

concatenating two masked sentences as inputs and making predictions about whether the two text

inputs are following each other.

There are multiple variants of BERT. Sentence-BERT (sBERT) is designed for sentence em-

bedding and focuses on learning meaningful representations of an entire sentence or a short text.
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A Robustly Optimized BERT Pretraining Approach (RoBERTa) developed by Facebook AI is an

enhanced version of the original BERT model with various modifications and optimizations. Dis-

tilRoBERTa is a distilled and smaller version of the RoBERTa model, which is designed for faster

inference and reduced resource requirements while maintaining the performance of the original

RoBERTa model. These models differ in their model size, raw texts used for pre-training, and

performance. We test all these model variants in our analysis of the ACS occupational write-in

data.

GPT Models Generative Pre-trained Transformer (GPT) is a decoder-only transformer model.

During pre-training, GPT was trained on a huge amount of existing data to model the relationships

between words for learning spelling, grammar, logic, and knowledge of human language without

any specific purposes. Unlike BERT, which uses a masked language modeling task and predicts

masked words by looking at both the left and right context of a word, GPT uses an autoregressive

language modeling task. It learns to predict the next word in a sequence given the preceding

words, but it only looks at the left context (unidirectional). Notably, starting from GPT-3.5, GPT

models incorporate a technique known as reinforcement learning from human feedback (RLHF).

This enhancement allows the model to understand specific tasks without requiring explicit training

examples. For instance, given a job description such as “direct the overall business activities for

credit card company”, we can instruct GPT by providing a “prompt” to classify it into Census and

SOC codes. By refining and adapting these prompts, GPT progressively enhances its performance

on the specified task, showcasing its remarkable flexibility and adaptability.

T5 Models The Text-To-Text Transfer Transformer (T5) is an encoder-decoder transformer

language model, which reframes all NLP tasks to a unified text-to-text format (Raffel et al. 2020).

With this unified framework, T5 allows both the input and output to be text strings. Moreover, the

unified text-to-text framework suggests that the same model, loss function, and hyperparameters

can be used on any NLP task. T5 model was pre-trained in a teacher forcing style, which means

that during the pre-training process, the model is provided with both input text sequences and

their corresponding target sequences. The term “teacher forcing” comes from the idea that during
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pretraining, the model is provided with the correct or “teacher” output (target sequence) for a given

input, and it learns to generate that output. This approach can expedite the training process and

help the model acquire the ability to generate meaningful and contextually appropriate responses.

In contrast to BERT, which is well-suited for tasks requiring contextual understanding within

sentences, and GPT, which is known for text generation capabilities, T5 is often considered flexible

and adaptable for a wide range of text transformation tasks.

After pretraining with teacher forcing, T5 can be fine-tuned on specific downstream tasks by

providing task-specific input-output pairs, further customizing its behavior for a variety of natu-

ral language understanding and generation tasks. Fine-tuned LAnguage Net T5 (FLAN-T5), an

enhanced version of T5, is the most widely used variant of T5. FLAN-T5 implements the chain-

of-thought fine-tuning, which incorporates a set of intermediate reasoning steps in generating the

output and improves the language model’s performance in a mixture of NLP tasks (Chung et al.

2022).

5 Fine-tuning Transformer-Based Models for Occupational Coding

Transformer-based language models are typically pre-trained on large-scale existing corpora to learn

semantic relationships between words in a pre-existing collection of data. Pre-trained language

models can be fine-tuned with a new dataset for a specific task. Fine-tuning a pre-trained model

significantly improves performance in specific tasks and reduces computation costs. The fine-tuning

is task-specific and may substantially improve the performance of the model. After experimenting

with different strategies, we develop the following fine-tuning steps illustrated in Figure 3.

*** FIGURE 3 ABOUT HERE ***

We first preprocess occupation data from the Alphabetical Indexes of Industries and Occupa-

tions. The data contain occupational descriptions and corresponding 2018 U.S. Census occupation

codes. The preprocess involves tasks such as removing stopwords, dividing text into smaller units

(tokens), reducing words to their base forms (lemmas), and expanding abbreviations, acronyms,

and initialisms. Some entries also include industry information. To improve the performance of the

neural network model, we concatenate the industry and the occupation text to form a single text.
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We then pick a neural network model, such as T5, and use its encoder to convert the text

occupation data to numerical vectors. Next, we train the neural network model by defining the

number of layers, hidden units, and other hyperparameters. We fine-tune the model by minimizing

the loss function and use the fine-tuned model to obtain the vector representations of industry titles

and occupation titles in the 2018 Census classifications. These steps are described in Algorithm 1.

*** ALGORITHM 1 ABOUT HERE ***

For downstream tasks, such as coding free-text occupation data, we further fine-tune the pre-

trained occupation autocoder developed from Algorithm 1. This process helps adapt the model to

perform well on domain-specific tasks. Within our Algorithm 2, we employ a two-step approach. In

the first step, we identify and select three potential industry codes and three potential occupational

codes for each entry based on the merged text. This step provides us with multiple candidate codes

to consider for each aspect. Specifically, we use the neural network model to calculate each merged

text entry’s cosine similarity score (equation 5) with all available industry and occupation titles in

2018. [Jiahui: add descriptions of cosine similarity here. Add a footnote to describe different cosine

similarity measures we have tried.] Then we sort the similarity scores from highest to lowest by

industry and occupation, respectively, to select the three industry and occupation titles that rank

the highest. Note that this step involves sequence generation, as we need to convert the vector

representation of industries and occupations back to their titles.

Next, we look up industry restriction rules in occupation titles described in the 2018 Alphabetical

Indexes of Industries and Occupations. The restriction rules dictate that certain occupations are

restricted to a specific industry. In the presence of industry information, certain occupation codes

must or must not be used. If there are no restrictions specified for a particular occupation, we choose

the first occupational code from the respective lists as our output. This straightforward selection

process is employed when the occupation is not constrained by a specific industry context.

*** TABLE 1 ABOUT HERE ***

However, in cases where there are industry restrictions for the occupation, we implement an

additional filtering mechanism. This filter is designed to examine the code lists and identify the
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most appropriate output result that satisfies the given industry restrictions. This ensures that

the final output is in compliance with any specified constraints or dependencies between industry

and occupation codes, resulting in a more accurate and context-aware coding output. There are

seven different restriction rules described in Table 1. The autocoder will return a single occupation

code with the best fit for each occupation (and industry) write-in entry. Algorithm 2 describes the

procedures of coding occupation data using our fine-tuned neural network model.

*** ALGORITHM 2 ABOUT HERE ***

6 Results

6.1 Training Data: Alphabetical Indexes of Industries and Occupations

The Alphabetical Indexes of Industries and Occupations were developed primarily for use as an

aid in classifying a respondent’s industry (i.e., employer’s type of business) and occupation (i.e.,

employee’s type of work) as reported in demographic surveys conducted by the U.S. Census Bu-

reau. The 2019 Alphabetical Indexes list over 22,000 industry descriptions and 32,000 job titles in

alphabetical order. These are comprehensive lists of specific industries and occupations developed

over time and continuously updated through review of the American Community Survey, decennial

censuses, and other survey responses.

The industry index lists potential industry descriptions with their associated 4-digit Census

Industry Code and the corresponding NAICS code. The occupation index contains a list of job

titles and their equivalent 4-digit Census Occupation code and SOC code. The occupation index

also provides guidance on when a class of work, education, or industry restriction should be applied.

For example, the job title “letter carrier” is coded to Census Occupation code 5550 (postal services

mail carries) only if the corresponding industry response is coded to Census Industry code 6370

(Postal Service).
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6.2 Testing Data: ACS Occupation Write-Ins

We use a unique public use sample of occupation write-ins from the 2019 American Community

Survey (ACS) Industry and Occupation write-in file.20 The ACS is an ongoing survey conducted

by the U.S. Census Bureau, collecting detailed demographic, social, economic, and housing data

from a sample of households and individuals across the country throughout the year. Unlike

the decennial census, the ACS provides current and frequent information about the American

population, using sampled households to estimate characteristics for the entire nation. The surveys

gather comprehensive information on age, race, education, income, occupation, industry, class of

worker, housing, and more, producing data at various geographic levels.

The public use write-in file includes occupation and industry details from a selection of the

American Community Survey (ACS) 2019 entries. The file offers users insight into the diverse raw

responses (write-ins) from ACS participants and the corresponding 4-digit Census 2018 occupation

and 2017 industry codes assigned by U.S. Census Bureau clerical coders. These codes align with the

SOC 2018 and North American Industry Classification (NAICS) 2017 standards. Results in this

paper rely solely on the write-in information of occupations and industries. However, when assigning

occupational codes, the Census Bureau’s clerical coders have access to more comprehensive data

than this file reveals, including employer name, job roles, education, sex, and age.

Originally, the dataset contained 11,000 randomly selected entries with a write-in response for

occupation title, job description, and industry type. Entries that could reveal personally identifiable

information (PII) were excluded. The most common type of PII removed was personal names or

the name or location of a business. Additionally, cases with nonsensical or clear refusals such as

“don’t know”, “D”, “R”, or expletives were removed. After applying the above steps, the final

count of records is 10,449.

20The ACS Industry and Occupation write-in files are only available to special sworn staff at the U.S. Census
Bureau. The file is used internally for training, quality assurance, and research. A public use sample was published
in July 2022 to be used by external researchers and to help illustrate the coding process.
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6.3 The Performance of Different Coding Methods

Our analyses rely on existing occupational autocoder methods, heuristic language models, proba-

bilistic language models, and neural network language models to conduct occupational coding of

the 2019 ACS Industry and Occupation write-in file. Based on the coding results, we calculate

the accuracy, precision, recall, and F1 scores for each corresponding model. The accuracy rate

evaluates how well the model can assign free text entries to correct Census occupation codes. The

precision rate shows how often the model is correct. The recall rate measures if the autocoder can

correctly find all entries belonging to a job title assigned by clerical coders. F1 scores combine

both recall and precision measures to determine the effectiveness of the model. The mathematical

definitions of these measures are shown below.

Accuracy:
True Positives + True Negatives

True Positives + True Negatives + False Positives + False Negatives
(8)

Precision:
True Positives

True Positives + False Positives
(9)

Recall:
True Positives

True Positives + False Negatives
(10)

F1-Score:
2× Precision× Recall

Precision + Recall
(11)

We calculate accuracy, precision, recall, and the F1 score individually for each occupation. Then,

to consider the differing sizes of the workforce across occupations, we aggregate each measure across

occupations into a single metric through a weighted average, with the weights corresponding to the

number of entries in each occupation, which reflects the relative sizes of workers across occupations.

We present results for these four metrics in Table 2. In the ensuing discussion, we focus on model

accuracy rates to evaluate overall model performance for simplicity.

Table 2 shows several important findings. First, the NIOCCS AutoCoder has the highest

accuracy rate out of the existing occupational autocoding methods. The NIOCCS AutoCoder

reached the highest accuracy rate of 61.82% when using job title information and the NAICS

industry code assigned by clerical coders. By contrast, the highest accuracy rates for the O*NET-

SOC AutoCoder and SOCcer AutoCoder are 58.19% and 43.16%, respectively. While NIOCCS

AutoCoder appears to be more effective than other AutoCoders, it is worth noting that its training
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data originate partly from the ACS write-in files. This design may have led to an overestimation

of its accuracy rate when the testing data are also from ACS. Second, the coding accuracy rates

are highest when the coding input includes both industry and job title information. For example,

the O*NET-SOC AutoCoder’s accuracy improves from 54.68% with just job title information to

58.19% when job title, description, and industry code are all included in the input data.21 Third,

for both the NIOCCS AutoCoder and the SOCcer AutoCoder, including job descriptions does not

markedly enhance accuracy compared to using job titles alone; however, incorporating industry

information significantly increases the accuracy rate.

*** TABLE 2 ABOUT HERE ***

Next we compare the performance of different natural language models discussed in Section

4. We incorporate the fine-tuning procedures discussed in Section 5 into the transformer-based

models. Table 3 shows that fuzzy matching, a heuristic language model, and conditional random

fields model, a probabilistic language model, produce similar accuracy rates (32.70% and 31.76%,

respectively). The fuzzy matching probabilistic language model is similar to the word matching

methods currently used by the Census autocoder and the NIOCCS AutoCoder. Thus, we expected

higher accuracy results of the fuzzy matching model due to its similarity with the Census autocoder.

The topic modeling approach yielded a low accuracy rate of 9%. This limitation is likely due to

the inherent challenges of topic models when the number of latent groups (in this case, several

hundred) is very high.

Among the neural network models in Table 3, transformer-based models outperform CNNs and

RNNs in accuracy rates and other evaluation metrics. This superior performance is attributable to

the transformer models’ bidirectional comprehension of text, their deep understanding of semantics

and logic, and the use of extensive pretraining datasets. In fact, their occupational classification

accuracy rates surpass not only those of other neural network models, probabilistic language mod-

els, and heuristic language models in Table 3 but also existing autocoders shown in Table 2. In

particular, the FLAN-T5 model, which is a fine-tuned version of the original Text-to-Text Transfer

21The O*NET-SOC autocoder does not allow users to include industry descriptions. The required industry input
is 2- to 6-digit NAICS codes.
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Transformer Language Model, has the best overall performance, with an accuracy rate of 71.13%.

We refer to our fine-tuned FLAN-T5 as T5-OCC (T5-based occupational classifier) in the following

discussion.

*** TABLE 3 ABOUT HERE ***

We further test whether the accuracy rates vary across different occupational groups. For

the sake of simplicity, we consider 23 major occupational groups defined in the Census Bureau’s

2018 occupational classifications.22 Table 4 reveals that T5-OCC is most reliable in legal, per-

sonal care and services, business and financial operations, and healthcare-related occupations and

the least reliable in production occupations and architecture and engineering occupations. We

present coding results across major occupational groups for other existing autocoders in Appendix

Tables A1-A3. Similar to the T5-OCC model results, the O*NET-SOC, SOCcer, and NIOCCS Au-

toCoders consistently produced high accuracy rates for legal occupations. Occupational groupings

with low accuracy rates varied per model. For example, the O*NET-SOC AutoCoder had low accu-

racy rates for management occupations and occupations belonging to the life, physical, and social

science grouping. Results from the SOCcer AutoCoder indicate the majority of assigned SOC-

2010 codes for computer and mathematical occupations do not crosswalk to a singular SOC-2018

code, resulting in frequent misclassification. Thus, the SOCcer AutoCoder had low accuracy rates

among the computer and mathematical occupations grouping. Similar to the O*NET AutoCoder

results, the NIOCCS AutoCoder also produced low accuracy rates for occupations belonging to

the life, physical, and social science grouping. Our T5-OCC consistently outperforms these other

autocoders in most of these major occupational groups. To further improve the performance of our

model, a possible future direction is to develop separate neural network language models for coding

occupations that belong to different major groups.

*** TABLE 4 ABOUT HERE ***

22More information on the Census 2018 occupation codes can be found on the Census Bureau’s website https:

//www.census.gov/topics/employment/industry-occupation/guidance/code-lists.html.
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7 Conclusion

The present study develops a new model for coding occupations using job descriptions based on the

T5 deep learning architecture. To customize language models for this particular task and enhance

the performance, we fine-tuned the T5 algorithm with occupational descriptions and industry re-

strictions sourced from the Alphabetic Indexes of Industries and Occupations and coding guidelines

adopted by the Census Bureau’s trained clerical coding staff. The T5-OCC model, in contrast to

existing AutoCoders, can accurately code on average 71% of raw write-in data into standard Census

occupational categories. Unlike existing autocoding tools, such as O*NET-AutoCoder, which allow

only one entry at a time, our method has the capability to process multiple entries in batches and

efficiently manage substantial volumes of data and research requests. This versatility makes it a

valuable asset for a wide range of research purposes.

Given the fast development of neural language models, it is likely that the performance of

autocoding models can be further improved in future research through the integration of newer

models. We offer several takeaways from our research and suggestions for future work on this topic.

First, autocoders developed from neural language models do not necessarily perform better than

those based on heuristic language models or probabilistic language models. For example, neural

models, such as GPT, have lower accuracy rates than fuzzy matching and conditional random

fields models. The reason is that the GPT model may produce varied occupational code output

to the same write-in input at different instances. This problem arises from the randomness in the

generation process introduced by the algorithm to avoid repetition.

Second, fine-tuning with high-quality human coding data is important for improving the accu-

racy and external validity of autocoding models. For example, we find that the accuracy rates of

O*NET-SOC AutoCoder and NIOCCS AutoCoder are significantly higher than SOCcer AutoCoder

as the SOCcer relies on job descriptions obtained from a health survey rather than a nationally

representative survey dataset. Most neural language models tend to perform poorly if they are not

fine-tuned. The fine-tuning procedures developed in Figure 3 can be used as a guideline for future

research. [Jiahui: describe other models that we have experimented with that yield similar accu-

racy rates as T5. Emphasize the importance of fine-tuning for improving the model performance
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no matter what model we use. ]

Third, the accuracy of autocoders is contingent on the type of information they use: whether

they rely solely on job titles, or if they combine job titles with detailed job and industry descriptions

and other relevant information about workers. Clerical coders working with ACS and CPS data

typically use job titles, job descriptions, industry descriptions, and the educational background of

workers. In our analysis of the ACS write-in data, our sample does not contain any educational

information. Often the more comprehensive the information is used, the greater the accuracy in

coding.

Finally, the level of coding accuracy we observe is not uniform across major occupational cat-

egories. This discrepancy indicates that the effectiveness of a single coding model can vary sig-

nificantly depending on the specific occupational group being coded. As a result, there may be a

need for deploying different models tailored to the unique characteristics and requirements of each

occupational group in the future.

30



Algorithm 1 Using Language Models to Pre-train an Occupation AutoCoder

1: Input: Occupational descriptions X and corresponding 2018 Census occupation codes W in
the Alphabetical Indexes (2019); 2018 Census occupation titles OCC and 2017 industry titles
IND

2: Output: A fine-tuned language model gΘ and vector representations of 2018 Census occupation
titles and 2017 industry titles OCCe and INDe

3: Initiate/Load a pre-trained neural network language model f with hyperparameters Θ

Pre-processing:
4: X′ = preprocessing(X) ▷ e.g., removing stopwords and handling abbreviations

Transformer encoder:
5: Y = encoder(X′) ▷ convert text data to numerical vectors
6: Y′ = fΘ(Y) ▷ obtain the output representation vector Y′

Fine-tuning by minimizing the loss function:
7: argminΘ,WL(Θ,W;Y′) ▷ W is the assigned 2018 Census OCC codes

8: Return g ← Fine-tuned model f with updated hyperparameters

Vector representation of Census industry and occupation titles:
9: IND′ = encoder(IND)

10: INDe = gΘ(IND′)
11: OCC′ = encoder(OCC)
12: OCCe = gΘ(OCC′)
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Algorithm 2 Using the Pretrained Occupation AutoCoder to Code Occupation Write-in Data

1: Input: Occupation (and industry) write-ins X
2: Output: 2018 Census occupation code OCC

Pre-processing:
3: X′ = preprocessing(X) ▷ e.g., removing stopwords and handling abbreviations

Transformer encoder:
4: Y = encoder(X′) ▷ convert text data to numerical vectors
5: Y′ = gΘ(Y) ▷ obtain the output representation vector Y′

6: using the autocoder in Algorithm 1

Similarity score calculations:
7: for vector v in INDe do ▷ INDe is vector representations of all Census industry titles
8: cos(Y′,v) = Y′·v

||Y||·||v||
9: end for

10: sort cos(Y′,v)
11: return IND1, IND2, IND3 ▷ retrieve the top three similar industry titles
12:

13: for vector u in OCCe do ▷ OCCe is vector representations of all Census occupation titles
14: cos(Y′,u) = Y′·u

||Y||·||u||
15: end for
16: sort cos(Y′,u)
17: return OCC1, OCC2, OCC3 ▷ retrieve the top three similar occupation titles

Occupation list refinement:
18: n = 1
19: while n ≤ 3 do ▷ apply industry restriction rules Ω defined
20: in the Alphabetical Indexes
21: if OCCn /∈ Ω then
22: OCC = OCCn

23: break
else

24: n = n + 1
25: end if
26: end while
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Table 1. Summary of Industry Restrictions in Occupation Titles

Format Examples Meaning

1070 When this is the industry code, assign this occupation code

(1070) This industry code is suggested for this occupation code

#1070 This industry code is mandatory for this occupation code

1070, 1080 If either of these is the industry code, assign this occupation code

1070-1390 If industry code is in this range, assign this occupation code

exc 1070 If this is not the industry code, assign this occupation code

\Any not listed Check the other index lines; if none apply, assign this occupation code

Data source: The Alphabetical Indexes of Industries and Occupations (2019).
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Table 2. Evaluation Metrics of Existing Autocoders in Coding Occupational Write-in Data

Input Data Include Overall (%)

Job Job Industry Industry Accuracy Precision Recall F1 Score

Title Description Code Description

O*NET-SOC AutoCoder ✓ 54.68 60.33 54.71 54.11

(version 14.1) ✓ ✓ 57.21 62.97 57.21 56.94

✓ ✓ ✓(2-4 NAICS) 58.19 66.16 58.19 57.03

NIOCCS AutoCoder ✓ 59.58 71.04 59.58 61.85

(version v4) ✓ ✓ 55.18 62.96 55.18 56.26

✓ ✓ ✓(2-6 NAICS) 60.98 66.67 60.98 61.56

✓ ✓ ✓ 61.82 66.70 61.82 62.42

SOCcer AutoCoder ✓ 36.32 66.16 57.17 57.03

(version v2) ✓ ✓ 36.53 66.16 57.17 57.03

✓ ✓ ✓(SIC) 43.16 47.72 43.16 43.57

Data sources: The Public-Use Sample of Occupation and Industry Write-ins from the American Community Survey,
2019.
Notes: The testing sample contains 10,449 occupation and industry write-in entries, randomly selected from the
2019 American Community Survey (ACS). We report each autocoder’s overall Accuracy, Precision, Recall, and F1
score. Accuracy is the number of correctly classified occupational entries divided by the total number of entries in
the testing sample. The overall Precision, Recall, and F1 score are the means of the Precision, Recall, and F1 score in
the 568 Census 2018 occupational categories. For each category, Precision equals the number of write-in entries that
are correctly classified into that category divided by the number of write-in entries classified into that category by the
autocoder; Recall equals the number of write-in entries that are correctly classified into that category divided by the
number of write-in entries classified into that category by ACS clerical coders; and the F1 score equals the harmonic
mean of Precision and Recall, F1 score = 2 * (Precision * Recall) / (Precision + Recall). The NIOCCS AutoCoder
allows the inclusion of industry descriptions along with job titles and job descriptions. In contrast, the O*NET-SOC
AutoCoder and the SOCcer AutoCoder restrict users to input industry codes in either the North American Industry
Classification System (NAICS) or Standard Industry Classification (SIC) formats.
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Table 3. Evaluation Metrics of Different Language Models in Coding Occupational Write-in Data

Input Data Include Overall (%)

Job Job Industry Accuracy Precision Recall F1 Score
Title Description Description

Heuristic Language Models

Fuzzy Matching ✓ ✓ ✓ 32.70 45.42 32.70 33.19

Probablistic Language Models

Conditional Random Fields Model ✓ ✓ ✓ 31.76 44.56 31.76 32.15

Topic Modeling ✓ ✓ ✓ 9.00 7.00 8.63 6.63

Neural Network Models

CNNs ✓ ✓ ✓ 24.40 36.11 24.40 26.67

RNNs ✓ ✓ ✓ 33.06 45.46 33.06 32.97

Transformer-Based Models

BERT ✓ ✓ ✓ 52.31 63.24 52.31 54.44

sBERT ✓ ✓ ✓ 53.22 64.16 53.22 54.89

RoBERTa ✓ ✓ ✓ 51.90 63.47 51.90 53.90

GPT-3.5 ✓ ✓ ✓ ∼ 19* - - -

GPT-4 ✓ ✓ ✓ ∼ 19* - - -

T5 ✓ ✓ ✓ 61.74 68.94 61.74 62.36

FLAN-T5 (“T5-OCC”) ✓ ✓ ✓ 71.13 78.63 71.13 69.57

Data sources: The Public-Use Sample of Occupation and Industry Write-ins from the American Community Survey,

2019.

Notes: The testing sample contains 10,449 occupation and industry write-in entries, randomly selected from the

2019 American Community Survey (ACS). We report each autocoder’s overall Accuracy, Precision, Recall, and F1

score. Accuracy is the number of correctly classified occupational entries divided by the total number of entries in

the testing sample. The overall Precision, Recall, and F1 score are the means of the Precision, Recall, and F1 score

in the 568 Census 2018 occupational categories. For each category, Precision equals the number of write-in entries

that are correctly classified into that category divided by the number of write-in entries classified into that category

by the autocoder; Recall equals the number of write-in entries that are correctly classified into that category divided

by the number of write-in entries classified into that category by ACS clerical coders; and the F1 score equals the

harmonic mean of Precision and Recall, F1 score = 2 * (Precision * Recall) / (Precision + Recall). We do not obtain

consistent evaluation metrics for the GPT models as the models might generate different occupational code outputs

for the same write-in input on different occasions. This issue stems from the algorithm’s intentional introduction of

randomness in the generation process to prevent repetition.
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Table 4. Evaluation Metrics of The Text-To-Text Transfer Transformer Model for Occupations
(T5-OCC) Across Major Occupational Groups

Overall (%)

Census 2018 Occupation # Occupations within

Groups Each Group Accuracy Precision Recall F1 Score

Management 33 70.69 82.54 70.69 74.21

Business and Financial Operations 29 70.97 80.65 70.97 74.41

Computer and Mathematical Occupations 18 40.00 45.56 40 41.11

Architecture and Engineering 24 11.12 11.11 11.12 11.11

Life, Physical, and Social Science 27 47.62 71.43 47.62 52.86

Community and Social Services 16 62.50 75.00 62.50 66.67

Legal Occupations 6 86.89 95.83 86.89 85.65

Education, Training, and Library 12 76.19 77.23 76.19 76.04

Arts, Design, Entertainment, Sports, and Media 30 75.00 70.83 75.00 72.22

Healthcare Practitioners and Technical Occupations 46 80.56 90.28 80.56 83.74

Healthcare Support 14 76.47 89.22 76.47 80.24

Protective Service 20 83.33 85.42 83.33 82.54

Food Preparation and Serving Related 12 74.07 82.10 74.07 76.90

Building and Ground Cleaning and Maintenance 8 66.67 94.44 66.67 76.78

Personal Care and Service 20 58.82 78.52 58.82 64.56

Sales and Related Occupations 18 72.55 94.77 72.55 78.93

Office and Administrative Support 54 62.50 72.79 62.50 66.54

Farming, Fishing, and Forestry 8 66.67 97.37 66.67 80.00

Construction and Extraction 37 80.95 96.03 80.95 85.77

Installation, Maintenance, and Repair 36 58.33 54.17 58.33 55.56

Production Occupations 63 60.71 69.94 60.71 61.33

Transportation and Material Moving Occupations 33 61.54 86.33 61.54 69.27

Military Specific Occupations 4 31.62 75.52 31.62 35.65

Data sources: The Public-Use Sample of Occupation and Industry Write-ins from the American Community Survey,
2019.
Notes: Our input data include job titles, job descriptions, and industry descriptions. The T5 model used is the base
version model. It is the same model shown in Table 3, except that we calculate the evaluation metrics by major
occupation groups.
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Figure 1. Excerpt of Industry and Occupation Questions from the ACS Questionnaire

Data sources: American Community Survey, 2019.
Notes: The figure shows questions related to occupations and industry in Section 42 on Description
of Employment in the American Community Survey. For these questions, respondents were asked
to describe the business, industry, or individual employer, job title, and task descriptions for the
major activity at the place where they worked. For the full questionnaire, please refer to Sample
ACS Forms and Instructions on the U.S. Census Bureau’s website.
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Employer 
name Industry Class of 

worker Education 

XXXX Elementary 
School 

Local          
government 

Bachelor’s 
degree 

Occupation Job duties 
Census 

Occupation Code 

4th grade teacher Instruct and evaluate students 
and create lesson plans 

Occupation Job Duties Census 
Occupation Code 

4th grade teacher 
Instruct and evaluate students 
and create lesson plans 2310 

Clerical coders at the National Processing Center use the 

Census Alphabetical Index of Occupations to classify each 

respondent’s occupation write-in with an occupation code.* 

The index contains over 30,000 job titles that each correspond 

to one of the 570 Census Occupation Codes. Coders also use 

respondents’ job duties, employer name, industry, and other 

characteristics to determine the best code for each case. 

Each occupation code corresponds to an occupation 

description in the Census Occupation Code List. Each 

occupation code can be cross-walked to a Standard 

Occupational Classification (SOC) code. The titles in 

the code list are what you see in published tables. 

Census Occupation Code List 

Occupation Description Census 
Occupation Code 

Educational  Instruction, and Library Occupations: 2205-2555 

     Postsecondary Teachers 2205 

     Preschool and Kindergarten Teachers 2300 

    Elementary and Middle School Teachers 2310 

     Secondary School Teachers 2320 

     Special Education Teachers 2330 

Occupation data is collected on the ACS through the use of two 

write-in questions. Respondents are asked to state their main 

occupation and describe their most important activities or duties. 

Based on the detail of these responses, each respondent is assigned 

a 4-digit Census Occupation Code to describe the work they do. 
Job duties 

Occupation 4th grade teacher 

students and create lesson 
plans. 

Instruct and evaluate 

Once all of the occupation data is coded, estimates 

are calculated and published on data.census.gov.  

Census Occupation Index 

Occupation Description Census 
Occupation Code 

Teacher electronics 2200 

Teacher elementary school 2310 

Teacher engineering 2200 

Teacher English 2200 

Teacher English literature 2200 

Figure 2. The Procedures of Occupation Data Collection and Coding in the ACS

Data sources: American Community Survey, 2019.
Notes: This figure illustrates the process of manually coding occupation write-ins for the ACS. In
2012, the Census Bureau introduced an autocoder for industry and occupation to reduce the burden
of manual coding. During the processing phase, around 41% of the cases receive an automated
occupation code before undergoing manual clerical coding.
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Start

Occupation write-in

(job title and/or job description)

Any
industry
write-in?

Concatenate occupation
and industry write-in

Preprocessing

Encoding data with the neural network

model (i.e., feature extraction and

normalization using vector embeddings)

Cosine similarity
score calculations

Select the top three
OCC and IND codes

based on similarity scores

Any industry
restriction rules
in occupation

titles*?

Remove OCC that are
not present within

the candidate industry

Output OCC with
the highest similarity score

End

yes

no

yes

no

Figure 3. The Algorithm Flowchart Illustrating the Fine-tuning Process of Converting Write-in
Data to Occupational Codes
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Notes: We adopt industry restriction rules defined in the Alphabetical Indexes of Occupations and
Industries (U.S. Census Bureau 2019). These rules state that certain occupations are restricted
to specific industries, and no other combination is possible. Therefore, the occupational coding
depends on whether industry information is provided (see Table 1).
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Appendix

Table A1. O*NET-SOC AutoCoder Across Major Occupational Groups

Overall (%)

Census 2018 Occupation # Occupations within

Groups Each Group Accuracy Precision Recall F1 Score

Management 33 38.40 37.63 38.40 35.19

Business and Financial Operations 29 58.69 50.40 58.69 51.14

Computer and Mathematical Occupations 18 47.28 40.22 47.28 41.79

Architecture and Engineering 24 41.43 44.72 41.43 41.08

Life, Physical, and Social Science 27 38.18 37.24 38.18 34.33

Community and Social Services 16 42.35 50.99 42.35 43.68

Legal Occupations 6 81.15 71.72 81.15 75.49

Education, Training, and Library 12 67.17 61.57 67.17 64.05

Arts, Design, Entertainment, Sports, and Media 30 63.57 59.64 63.57 59.27

Healthcare Practitioners and Technical Occupations 46 82.55 81.48 82.55 81.37

Healthcare Support 14 72.58 62.53 72.58 66.82

Protective Service 20 76.25 69.07 76.25 71.93

Food Preparation and Serving Related 12 74.06 68.88 74.06 70.86

Building and Ground Cleaning and Maintenance 8 60.34 49.87 60.34 53.64

Personal Care and Service 20 68.03 54.74 68.03 59.93

Sales and Related Occupations 18 56.36 49.79 56.36 51.87

Office and Administrative Support 54 59.36 51.21 59.36 53.07

Farming, Fishing, and Forestry 8 63.86 45.53 63.86 52.86

Construction and Extraction 37 67.80 58.44 67.80 61.89

Installation, Maintenance, and Repair 36 56.14 51.98 56.14 52.67

Production Occupations 63 48.17 43.95 48.17 43.94

Transportation and Material Moving Occupations 33 64.01 57.30 64.01 59.35

Military Specific Occupations 4 12.50 25.00 12.50 16.67

Data sources: The Public-Use Sample of Occupation and Industry Write-ins from the American Community Survey,
2019.
Notes: Our input data include job titles, job descriptions, and industry descriptions. The O*NET-SOC model is the
same model shown in Table 2, except that we calculate the evaluation metrics by major occupation groups.
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Table A2. Evaluation Metrics of the Standardized Occupation Coding for Computer-assisted
Epidemiologic Research (SOCcer) Across Major Occupational Groups

Overall (%)

Census 2018 Occupation # Occupations within

Groups Each Group Accuracy Precision Recall F1 Score

Management 33 31.67 34.29 31.67 27.99

Business and Financial Operations 29 53.11 39.76 53.11 44.56

Computer and Mathematical Occupations 18 1.36 .73 1.36 .91

Architecture and Engineering 24 30.48 22.77 30.48 24.52

Life, Physical, and Social Science 27 30.91 31.48 30.91 29.63

Community and Social Services 16 37.06 36.76 37.06 34.77

Legal Occupations 6 82.79 74.62 82.79 77.95

Education, Training, and Library 12 38.76 35.95 38.76 36.36

Arts, Design, Entertainment, Sports, and Media 30 56.88 52.42 56.88 50.91

Healthcare Practitioners and Technical Occupations 46 62.55 54.95 62.55 57.40

Healthcare Support 14 21.74 17.33 21.74 19.24

Protective Service 20 70.83 61.42 70.83 65.50

Food Preparation and Serving Related 12 62.78 58.52 62.78 59.70

Building and Ground Cleaning and Maintenance 8 56.66 42.24 56.66 46.52

Personal Care and Service 20 66.17 49.86 66.17 55.86

Sales and Related Occupations 18 48.75 41.47 48.75 43.33

Office and Administrative Support 54 52.31 38.28 52.31 43.23

Farming, Fishing, and Forestry 8 42.17 21.55 42.17 28.10

Construction and Extraction 37 60.34 45.01 60.34 50.18

Installation, Maintenance, and Repair 36 42.46 35.28 42.46 36.88

Production Occupations 63 42.06 32.23 42.06 35.03

Transportation and Material Moving Occupations 33 35.99 24.55 35.99 28.51

Military Specific Occupations 4 0.0 0.0 0.0 0.0

Data sources: The Public-Use Sample of Occupation and Industry Write-ins from the American Community Survey,
2019.
Notes: Our input data include job titles, job descriptions, and industry descriptions. The SOCcer model is the same
model shown in Table 2, except that we calculate the evaluation metrics by major occupation groups.
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Table A3. Evaluation Metrics of the NIOSH Industry and Occupation Computerized Coding
System (NIOCCS) Across Major Occupational Groups

Overall (%)

Census 2018 Occupation # Occupations within

Groups Each Group Accuracy Precision Recall F1 Score

Management 33 48.95 74.82 48.95 56.73

Business and Financial Operations 29 63.77 86.28 63.77 72.42

Computer and Mathematical Occupations 18 56.46 66.38 56.46 60.28

Architecture and Engineering 24 44.29 69.17 44.29 52.41

Life, Physical, and Social Science 27 37.27 64.45 37.27 44.10

Community and Social Services 16 50.59 81.49 50.59 59.17

Legal Occupations 6 74.59 90.46 74.59 81.49

Education, Training, and Library 12 63.89 75.74 63.89 68.73

Arts, Design, Entertainment, Sports, and Media 30 64.31 84.01 64.31 71.52

Healthcare Practitioners and Technical Occupations 46 72.48 87.25 72.48 77.72

Healthcare Support 14 68.56 81.99 68.56 72.41

Protective Service 20 74.17 86.11 74.17 78.98

Food Preparation and Serving Related 12 65.79 78.02 65.79 70.61

Building and Ground Cleaning and Maintenance 8 78.19 90.22 78.19 83.69

Personal Care and Service 20 76.95 96.75 76.95 83.69

Sales and Related Occupations 18 60.40 80.90 60.40 67.37

Office and Administrative Support 54 57.26 75.19 57.26 62.67

Farming, Fishing, and Forestry 8 63.86 93.78 63.86 74.58

Construction and Extraction 37 70.15 85.76 70.15 76.43

Installation, Maintenance, and Repair 36 61.75 76.23 61.75 67.40

Production Occupations 63 52.01 67.20 52.01 55.88

Transportation and Material Moving Occupations 33 66.48 83.18 66.48 72.44

Military Specific Occupations 4 12.50 12.50 12.50 12.50

Data sources: The Public-Use Sample of Occupation and Industry Write-ins from the American Community Survey,
2019.
Notes: Our input data include job titles, job descriptions, and industry descriptions. The NIOCCS model is the same
model shown in Table 2, except that we calculate the evaluation metrics by major occupation groups.
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